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Cumulant ratios and their scaling functions for Ising systems in a strip geometry
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We calculate the fourth-order cumulant rafroposed by Binderfor the two-dimensional Ising model in
the strip geometry. X . The density-matrix renormalization-group method enables us to consider typical open
boundary conditions up tb=200. Universal scaling functions of the cumulant ratio are determined for strips
with parallel as well as opposing surface fields. Their asymptotic properties are also examined.

PACS numbgs): 05.50:+q, 68.35.Rh, 75.10.Hk

I. INTRODUCTION is its length with the Hamiltonian

An universality principle is a cornerstone of contempo- & )
rary theory of phase transitions. According to this principle, ~ H=—1J > sisi—HX s—Hi 2 s—H X si|, (1)
the following sorts of quantities are universal: critical expo- D) ' ' '
nents, certain amplitude ratios, and scaling functifhk
They differ each from other in their status. Tteilk) critical
exponents are independent on boundary conditions, where
two other groups are dependent.

where the first sum runs over all nearest-neighbor pairs of
g'ges while the last two sums run over the first and lthie
column, respectivelyH is the bulk magnetic field, whereas
The critical exponents are known for many modéeth Hy andHL'gre the surface_field@ll of them are dimension-
exactly and approximately The collection of results avail- €SS quantities measured in unitsJt In the course of cal-
able for amplitude ratios is also rich, but significantly smallerculations of the cumulant in the termodynamic limit, two
than for exponents; see R¢l] for exhaustive information. limiting processes are takem:— T, andL—. In general, a
Among amplitude ratios, so called cumulant ratios are ovalue of the cumulant does depend on ordering of these lim-
great importance. In physical terms, they measure deviatiofis [12]. In our paper we analyze so-called “massless” case
of magnetization fluctuations at criticality from a Gaussian(analogously as in Ref.[12]): T=T.=2/In(1+2)
distribution. Cumulant ratios have also been used to locate-2.269185 followed by — . Therefore, we do not notice
the critical points and critical lines in many mod¢B-5].  the temperature dependence below. We also @aspinnec-
Last, cumulants give subsequent approximations of the scaéssary explicit dependence on surface fields until the discus-
ing function for free energyas they are expressible by de- sjon of scaling functions.
rivatives of the free energy with respect to the magnetic field, \we consider the ratio of moments of magnetization pro-

i.e., higher susceptibilitigs This way, cumulants enter such osed by Bindef2], with a modification for a system in strip
important and experimentally measurable quantities such a eometry[2,5,8,11. Let us first define

for instance, the scaling equation of state—and thus pla

very important role at criticality. U, = lim [N((M*)(M2)~2-3)]/3, )
Cumulant ratios are dependent on boundary conditions. N0

They were calculated mainly for periodic boundary condi-

tions or for infinite system§2,5-13. However, from an ex- whereM =3,s; is the total(extensivé magnetization. Then,

perimental point of view, the systems in finite “open” ge- the cumulant ratio in question is

ometries are most frequently investigated. It correspond to

boundary conditions of “open” type: “free”(no surface r=limL U, . (3

fields), “wall” (infinite surface fields We are aware of only Lo

very few results of calculations with the above boundary

conditions[2,4]. Motivated by this situation, we state the aim Ther quantity defined above is equalainusBinder cumu-

of this paper: Calculation of universal cumulant ratios for thelant. We use this sign convention in order to compare it with

two-dimensional Ising model in strip geometry under bound-some theoretical estimates, see below.

ary conditions of “free” and “wall” types, including the An equivalent(but more convenient for yaormula for

intermediate regime. the above cumulant is as follows: LefL;H) be the largest
We have calculated cumulant ratios using method callegigenvalue of transfer matrix for the strip of width[so the

the density-matrix renormalization-grouMRG). Since quantity — T In\(L;H) is the free energy for one column of

the DMRG is most powerful for open boundary conditions, itsping. We define

is particularly suited for our goals.
k

Il. DEFINITION OF CUMULANTS mk(L):Wm AL H)|[h—o. (4)

We consider the two-dimensional Ising system on a
square lattice in strip geometry. (is width of the strip andd ~ Then our cumulant is equal {&]
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r=limr(L)= lim m4(L)/3Lm§(L). (5) TABLE I. Values of cumulant ratios for some valueslof
L—o0 L—oe
L r(L), free r(L), wall+ + r(L), wall+ —
Our metho_d of _calculation is based directly on thg definition 4160 -1.098525 0.462556 -0.304831
(5). .We first find logarithms pf the largest elgenva_llue 170 -1.098234 0.462225 -0.304859
)‘(h'H) Iforlsom de values ok ]Eat ‘;'(X_eg'-) : g‘i"t’h""e ”r‘:me“_' 180  -1.097964 0.461859 -0.304883
CaLy ca guf.‘"‘te” e”"?t'veét‘g or e f‘rt‘ ’twe”t eratio 190 .1.097723 0.461525 -0.304902
r(L), and finally perform the extrapolatidn—co. 200  -1.097481 0.461133 -0.304915
o0 -1.09323) 0.4552) -0.305@1)

IIl. SOME TECHNICAL DETAILS OF CALCULATIONS

We use the DMRG method for calculations of\ifL;H).

Originally, this method was proposed by WHist] for find- . 2v5 One of them was tHe dependence of derivatives,

ing accurate approximations to the ground state and the Io"‘%ind m,. Finite-size scalingFSS theory[1,8] predicts the
lying excited states of quantum chains. Its heart is the recurfollowing behavior: '

sive construction of the effective Hamiltonian of a very large
system using a truncated basis set, starting from an exact

We have tested correctness of our calculations in several

solution for small systems. Later, the DMRG was adapted by d"f WL LB ®
Nishino [15] for two-dimensional classical systems, where dH" ’
the effective transfer matrix is constructed. We use this ver- H=0

sion of DMRG. The DMRG has been applied successfully to

many different problems and now it can be treated as a stavhere we havel =15/8 andv=1 for the two-dimensional

dard method, which is very flexible, relatively easy to imple-Ising model.d is a dimension of system in the “finite-size

ment and very precise. For a comprehensive review see Ralirection,” i.e., it is a number of linearly independent direc-

[16]. tions along which a size of the system is finite. For our case
A factor crucial for prECiSion of DMRG is the so-called (the strip we have to tak@:l that gi\/es the fo”owing

number of states keph, describing the dimensionality of predictions for derivatives:

effective transfer matrix14,16]; the larger number of states

kept, the more accurate the value of the free energy. Using

m=50 we can calculate the free energy with accuracy of the

order 10 2 for strips of width of the ordet. =200. This is _

an one order more than the size of systems available by exa¢here p,=11/4 andp,=13/2. An extrapolation procedure

diagonalization of the transfer matrix. This fact is crucial for has been performed with use of the powerful Bulirsch-Stoer

us, because of using the extrapolation procedures. In our c&iBS) method[17].

culations we apply the finite system algorithm, developed by

White for studying finite systemisl4]. An additional factor IV. RESULTS: THE “EREE” CASE

determining the accuracy of the method is the number of

sweeps, i.e., the number of iterations made in order to obtain The “free” case corresponds to zero surface fieldg

self-consistency of results. Our numerical experience shows H, =0 in the formula(1). We have performed calculations

that in most cases, it is sufficient to apply only one sweegor L in the range 16& L <200 with step 10; these values of

(although in the “walt—" case two sweeps are L were taken in all situations. We took an increment of

my~LP2,  m,~Lr4, )

necessary—see belgpw “bulk” magnetic field AH=5%x10"% m=50 and one
In our calculations also another factor limiting the accu-sweep. The results are listed in Table .
racy is involved(independently of the DMRG methadt is As a byproduct we have tested the FSS predictions for the

an error originated from a numerical differentiation. In theL dependence of derivatives, and m,. Values of corre-
procedure of numerical differentiation, a suitable choice ofsponding exponenisee Eq.7)] are p,=2.7495(3) anc,
incrementAH of an argument is of crucial importance. It is =6.50(3), sopredictions of FSS are confirmed in excellent
clear thatAH should be taken as small as possible; on thenanner. The same conclusion is true in next two situations.
other hand, due to the finite accuracy of the calculation,of As another test of correctnegsand quality of DMRG

an error of the difference quotient increases with decreasingesults, we have calculated ratios by the immediate numeri-
AH. The increments used in our calculations have been dezal diagonalization of transfer matrix for #0.<18 (L even;
termined as a compromise between the above two tendethese values ok are also used in the next caged/e pro-
cies. Additional factor determining the accuracy of numeri-ceeded as above, i.e., by calculation of logarithm of the larg-
cal differentiation, is a number of points used to calculate theest eigenvalue for some values of bulk fiédd followed by
derivative. We use formulas where a derivative is determinediumerical differentiation of (H) and computation of ratio
from the second-order Taylor expansifire., we needn and extrapolation, without any “renormalization.” We took
+ 3 values of function fonth derivative; this way, an accu- the increment AH=10"* We have obtainedr=

racy is of the ordel®((AH)®)]. Therefore, then, was de- —1.0941); p,=2.74Q1); p,=6.4§1). It is seen that the
termined from five point§three points in symmetrical case, results are fully consistent with the DMRG calculations but
i.e., f(H)=f(—H)] and from seven points fom, (four less precise; we have the same situation for two other bound-
points when the symmetry was present ary conditions.
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V. RESULTS: THE “"WALL ++" CASE ‘ & BP0 o é
N 025 | p@odoa@emo® B

The “wall++" boundary condition corresponds to the D@g&ub‘”
assumption that all boundary spins have the same value an_ _;,s |
sign_. It is equi_valent to putting11=HL_=oo inl Eq. (2). Nu- £ o L=40
merical experience suggests that it is sufficient to teke 075 | o L=80
=10 - for larger values dfl ; the changes of the free energy a) ©L=120
are negligible[18]. 15 , , , ‘ ‘

The “wall+ + " system is more intricate, from numerical o 0 4 60 80 100 120
point of view, than the “free” one. The complication is due ue ODHE DI O © O O o I
to the fact that, for parallel surface fields, the maximum of 04} o= 1
the free energyf(H) does not appear foH=0 but it is Zo6 |
shifted to a certain nonzero vallty(L). This phenomenon . 0 Ledo
is called the capillary condensatiph8,19. In order to cal- —08 o L=80
culate derivatives and ratios at zero magnetizafi@n, at the _10 ©L=120
maximum of the free energywe first have to find its posi- 5 »
tion Ho(L). FSS predictg19] the following dependence: -2 20 20 50 80
Ho(L)~L 2", From our DMRG calculations, we have ob- 4

tained the valué\/v=1.87492). FIG. 1. Th | ) function dinensionl |
For the “wall++" configuration the free energy is not . G'. - 1he C”En” ant ratio as a function aimensionlesscal-
ing variable{=LH71: (a) the “+ +” BC (b) the “+ —" BC. No-

longer a symmetric function of the bulk fietd, so we have tice that the convergence of ratio to its limit value is much faster for
been forced to calculatm, from 5 points andm, from 7 | N “g 8 S
+—" than for “ ++.” For the latter case, the saturation is

points. We have taken the incremeAHH=5x10"6 m . - .

=50 and one sweep. The results are presented in Table I. thr:h'eved for¢=300 {outside the range of pipt
exponents ofm, andm,, we have obtainedy,=2.7504(3) . L
and p,=6.50243). Theprecision of these results is a little S|onle‘s‘s coinbmatlo‘g‘j— U_,"l [20]. We have cz.:\I.cuIatedfor
bit less than in the “free” case, although still very satisfac-Poth “++” and “+—" boundary conditions forL
tory (three significant digits However, it should be stressed =40,80,120 usingn=40, and at full range of scaling vari-
that here we must do much more numerical computation§P!€- The results are presented in Fig®),11(b). It is seen
than in the “free” case, so some lack of precision is inevi- that scaling properties are confirmed in excellent manner.

table. Exact diagonalization of transfer matrix gave the fol- Limiting values of these functiong.e., for {=0 and{
lowing valuesr =0.454); p,=2.751); ps=6.5(2). —0) are fully consistent with our more precise calculations,

although convergence of ratio to its limit value is much
faster for “wall+ —" than for “wall + +.” It is interesting

VI. RESULTS: THE “WALL +—" CASE . . .
to examine asymptotic propertiesiqfl) for {—o0. We have

One of the important physical implications of the-"-" checked two simplest possibilitie$l) ~r + A exp(—B¢) and
boundary condition is the presence ofiaterfacebetween *  r({)~r+A/ B, for some constantd,B. Our data allowed
+" and “ —" phases in the system. It causes large fluctua-us to exclude the first possibility, and to verify that the sec-

tions, which have an implication in numerical practice,ond one is fulfilled with good accuracy. By use of least-
namely,two sweepsire necessary to ensure self-consistencysquare fitting in the log-log scale, we obtained the valles
of results. In our calculations, the value of surface fidld =1.572), B=1.25(1) for the+ — case, andA=280(10),
=100 the incremenAH=2x10"°, andm=40 were taken. B=1.28(10) for the+ + case. On the base of these results,
The results are listed in Table |. The values of exponents aree conjecture that the value of the expon8nis common
p,=2.75022), p4,=6.5042). for both cases and equal to 1.25. At this moment, we are not

The procedure of exact diagonalization of transfer matrixable to explain it theoretically, and we postpone it to the
gave the following valuesr=—0.3052); p,=2.7551); future.
ps=6.5012). As amatter of some interest, let us remark that As far as we know, scaling functions for cumulants have
for the “wall+ —" boundary condition theL dependence is been almost not studied so far. The only exception is paper
much weaker than for the “free” and “wa#t + " situations.  [21]; however, the authors consider scaling functions differ-

ent from ours.
VII. SCALING FUNCTIONS FOR RATIOS

- VIIl. SUMMARY
The “wall+ +/+ —"-type conditions can be treated as

limiting cases of the systems with equfhite parallel/ We have calculated cumulant ratios for Ising strips with
antiparallel & +/+ —) surface fields. Another limiting case three natural boundary conditions, almost not studied so far:
is the “free” boundary conditionBC), where the values of “free,” “wall ++,” and “wall + —" situations. We have
surface fields are set to zero. One can expect that for inteapplied the density-matrix renormalization-group method
mediate situations, i.e., finite values of boundary fielg, ~ followed by numerical differentiation and extrapolatian
cumulants would be smooth functions bff;. Particularly — —cc. We claim that our results are very precigieree or four
interesting are scaling properties of these functions. The scasignificant digit$. The precision is comparable with three
ing theory predicts that at criticality, the system depends omther “top quality” methods used in similar calculations:
the surface fieldH; and strip widthL only through dimen- Monte Carlo[12], some versions of renormalization group



4400 BRIEF REPORTS PRE 62

[13], and analysis of high-temperature seffi&8]. We have also calculated the quantity which has appar-

Some of our resultgfor the “wall++" case) can be ently escaped attention so far, namely, the scaling functions
interesting in the context of rigorous results for cumulantsfor cumulants. Such functions provide information how finite
namely, those obtained by Newman and Shlosri2?|.  surface fields influence values of cumulants. This influence is
They proved general inequality for Ursell functions in ferro- significant—in one case’ ++") even the sign of the cumu-
magnetic Ising systems at zero bulk magnetic field lant changes upon growth of the surface field.
(—1)"*U,,=0. Our cumulant corresponds ttJ,. For the Natural lines of continuation of our investigations are:
“free” and “wall + —" systems, this inequalitys fulfilled,  testing of universality of cumulants and scaling functions
whereas in the “walt +” case isnot This does not con- (for other models in the two-dimensional Ising universality
tradict the Newman and Shlosman inequality, because thelass, for example, the hard squares mpded calculation
“wall ++" system is calculated atH#0 [remember of higher cumulants. This work is currently in progress.
Ho(L)~L~2/"]. It shows, however, that the Newman and

Shlo_sman inequality cannot be fulf_llled if t_he assumptid)n_ ACKNOWLEDGMENT
=0 is relaxed. It would be very interesting to generalize
their results for the “wall-type” cases. A.D. is grateful to J. Ulner for discussions.
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