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Cumulant ratios and their scaling functions for Ising systems in a strip geometry
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We calculate the fourth-order cumulant ratio~proposed by Binder! for the two-dimensional Ising model in
the strip geometryL3`. The density-matrix renormalization-group method enables us to consider typical open
boundary conditions up toL5200. Universal scaling functions of the cumulant ratio are determined for strips
with parallel as well as opposing surface fields. Their asymptotic properties are also examined.

PACS number~s!: 05.50.1q, 68.35.Rh, 75.10.Hk
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I. INTRODUCTION

An universality principle is a cornerstone of contemp
rary theory of phase transitions. According to this princip
the following sorts of quantities are universal: critical exp
nents, certain amplitude ratios, and scaling functions@1#.
They differ each from other in their status. The~bulk! critical
exponents are independent on boundary conditions, whe
two other groups are dependent.

The critical exponents are known for many models~both
exactly and approximately!. The collection of results avail
able for amplitude ratios is also rich, but significantly smal
than for exponents; see Ref.@1# for exhaustive information.

Among amplitude ratios, so called cumulant ratios are
great importance. In physical terms, they measure devia
of magnetization fluctuations at criticality from a Gaussi
distribution. Cumulant ratios have also been used to loc
the critical points and critical lines in many models@2–5#.
Last, cumulants give subsequent approximations of the s
ing function for free energy~as they are expressible by d
rivatives of the free energy with respect to the magnetic fie
i.e., higher susceptibilities!. This way, cumulants enter suc
important and experimentally measurable quantities such
for instance, the scaling equation of state—and thus p
very important role at criticality.

Cumulant ratios are dependent on boundary conditio
They were calculated mainly for periodic boundary con
tions or for infinite systems@2,5–13#. However, from an ex-
perimental point of view, the systems in finite ‘‘open’’ ge
ometries are most frequently investigated. It correspond
boundary conditions of ‘‘open’’ type: ‘‘free’’~no surface
fields!, ‘‘wall’’ ~infinite surface fields!. We are aware of only
very few results of calculations with the above bounda
conditions@2,4#. Motivated by this situation, we state the ai
of this paper: Calculation of universal cumulant ratios for t
two-dimensional Ising model in strip geometry under boun
ary conditions of ‘‘free’’ and ‘‘wall’’ types, including the
intermediate regime.

We have calculated cumulant ratios using method ca
the density-matrix renormalization-group~DMRG!. Since
the DMRG is most powerful for open boundary conditions
is particularly suited for our goals.

II. DEFINITION OF CUMULANTS

We consider the two-dimensional Ising system on
square lattice in strip geometry (L is width of the strip andN
PRE 621063-651X/2000/62~3!/4397~4!/$15.00
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is its length! with the Hamiltonian

H52JF (
^ i , j &

sisj2H(
i

si2H1(
i

(1)

si2HL(
i

(L)

si G , ~1!

where the first sum runs over all nearest-neighbor pairs
sites while the last two sums run over the first and theLth
column, respectively.H is the bulk magnetic field, wherea
H1 andHL are the surface fields~all of them are dimension-
less quantities measured in units ofJ). In the course of cal-
culations of the cumulant in the termodynamic limit, tw
limiting processes are taken:T→Tc andL→`. In general, a
value of the cumulant does depend on ordering of these
its @12#. In our paper we analyze so-called ‘‘massless’’ ca
~analogously as in Ref. @12#!: T5Tc52/ln(11A2)
.2.269185 followed byL→`. Therefore, we do not notice
the temperature dependence below. We also drop~as unnec-
essary! explicit dependence on surface fields until the disc
sion of scaling functions.

We consider the ratio of moments of magnetization p
posed by Binder@2#, with a modification for a system in strip
geometry@2,5,8,11#. Let us first define

UL5 lim
N→`

@N~^M4&^M2&2223!#/3, ~2!

whereM5( isi is the total~extensive! magnetization. Then
the cumulant ratior in question is

r 5 lim
L→`

L21UL . ~3!

The r quantity defined above is equal tominusBinder cumu-
lant. We use this sign convention in order to compare it w
some theoretical estimates, see below.

An equivalent~but more convenient for us! formula for
the above cumulant is as follows: Letl(L;H) be the largest
eigenvalue of transfer matrix for the strip of widthL @so the
quantity 2T ln l(L;H) is the free energy for one column o
spins#. We define

mk~L !5
dk

dHk
ln l~L;H !uH50 . ~4!

Then our cumulant is equal to@5#
4397 ©2000 The American Physical Society
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r 5 lim
L→`

r ~L ![ lim
L→`

m4~L !/3Lm2
2~L !. ~5!

Our method of calculation is based directly on the definit
~5!. We first find logarithms of the largest eigenvalu
l(L;H) for some values ofH ~at fixedL). Next, we numeri-
cally calculate derivatives~4! for k52 and 4, then the ratio
r (L), and finally perform the extrapolationL→`.

III. SOME TECHNICAL DETAILS OF CALCULATIONS

We use the DMRG method for calculations of lnl(L;H).
Originally, this method was proposed by White@14# for find-
ing accurate approximations to the ground state and the
lying excited states of quantum chains. Its heart is the re
sive construction of the effective Hamiltonian of a very lar
system using a truncated basis set, starting from an e
solution for small systems. Later, the DMRG was adapted
Nishino @15# for two-dimensional classical systems, whe
the effective transfer matrix is constructed. We use this v
sion of DMRG. The DMRG has been applied successfully
many different problems and now it can be treated as a s
dard method, which is very flexible, relatively easy to imp
ment and very precise. For a comprehensive review see
@16#.

A factor crucial for precision of DMRG is the so-calle
number of states keptm, describing the dimensionality o
effective transfer matrix@14,16#; the larger number of state
kept, the more accurate the value of the free energy. U
m550 we can calculate the free energy with accuracy of
order 10212 for strips of width of the orderL5200. This is
an one order more than the size of systems available by e
diagonalization of the transfer matrix. This fact is crucial f
us, because of using the extrapolation procedures. In our
culations we apply the finite system algorithm, developed
White for studying finite systems@14#. An additional factor
determining the accuracy of the method is the number
sweeps, i.e., the number of iterations made in order to ob
self-consistency of results. Our numerical experience sh
that in most cases, it is sufficient to apply only one swe
~although in the ‘‘wall12 ’’ case two sweeps are
necessary—see below!.

In our calculations also another factor limiting the acc
racy is involved~independently of the DMRG method!: it is
an error originated from a numerical differentiation. In t
procedure of numerical differentiation, a suitable choice
incrementDH of an argument is of crucial importance. It
clear thatDH should be taken as small as possible; on
other hand, due to the finite accuracy of the calculation ol,
an error of the difference quotient increases with decrea
DH. The increments used in our calculations have been
termined as a compromise between the above two ten
cies. Additional factor determining the accuracy of nume
cal differentiation, is a number of points used to calculate
derivative. We use formulas where a derivative is determi
from the second-order Taylor expansion@i.e., we needn
13 values of function fornth derivative; this way, an accu
racy is of the orderO„(DH)3

…]. Therefore, them2 was de-
termined from five points@three points in symmetrical case
i.e., f (H)5 f (2H)] and from seven points form4 ~four
points when the symmetry was present!.
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We have tested correctness of our calculations in sev
ways. One of them was theL dependence of derivativesm2
and m4. Finite-size scaling~FSS! theory @1,8# predicts the
following behavior:

dnf

dHn
~L !U

H50

;L2d̃1nD/n, ~6!

where we haveD515/8 andn51 for the two-dimensional
Ising model.d̃ is a dimension of system in the ‘‘finite-siz
direction,’’ i.e., it is a number of linearly independent dire
tions along which a size of the system is finite. For our ca
~the strip! we have to taked̃51 that gives the following
predictions for derivatives:

m2;Lr2, m4;Lr4, ~7!

wherer2511/4 andr4513/2. An extrapolation procedur
has been performed with use of the powerful Bulirsch-St
~BS! method@17#.

IV. RESULTS: THE ‘‘FREE’’ CASE

The ‘‘free’’ case corresponds to zero surface fieldsH1
5HL50 in the formula~1!. We have performed calculation
for L in the range 160<L<200 with step 10; these values o
L were taken in all situations. We took an increment
‘‘bulk’’ magnetic field DH5531026, m550 and one
sweep. The results are listed in Table I.

As a byproduct we have tested the FSS predictions for
L dependence of derivativesm2 and m4. Values of corre-
sponding exponents@see Eq.~7!# arer252.7495(3) andr4
56.50(3), sopredictions of FSS are confirmed in excelle
manner. The same conclusion is true in next two situatio

As another test of correctness~and quality! of DMRG
results, we have calculated ratios by the immediate num
cal diagonalization of transfer matrix for 10<L<18 ~L even;
these values ofL are also used in the next cases!. We pro-
ceeded as above, i.e., by calculation of logarithm of the la
est eigenvalue for some values of bulk fieldH, followed by
numerical differentiation off (H) and computation of ratio
and extrapolation, without any ‘‘renormalization.’’ We too
the increment DH51024. We have obtained r 5
21.094(1); r252.746(1); r456.46(1). It is seen that the
results are fully consistent with the DMRG calculations b
less precise; we have the same situation for two other bou
ary conditions.

TABLE I. Values of cumulant ratios for some values ofL.

L r (L), free r (L), wall11 r (L), wall12

160 -1.098525 0.462556 -0.304831
170 -1.098234 0.462225 -0.304859
180 -1.097964 0.461859 -0.304883
190 -1.097723 0.461525 -0.304902
200 -1.097481 0.461133 -0.304915
` -1.0932~3! 0.455~2! -0.3050~1!
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V. RESULTS: THE ‘‘WALL ¿¿ ’’ CASE

The ‘‘wall11’’ boundary condition corresponds to th
assumption that all boundary spins have the same value
sign. It is equivalent to puttingH15HL5` in Eq. ~1!. Nu-
merical experience suggests that it is sufficient to takeH1
510 – for larger values ofH1 the changes of the free energ
are negligible@18#.

The ‘‘wall11 ’’ system is more intricate, from numerica
point of view, than the ‘‘free’’ one. The complication is du
to the fact that, for parallel surface fields, the maximum
the free energyf (H) does not appear forH50 but it is
shifted to a certain nonzero valueH0(L). This phenomenon
is called the capillary condensation@18,19#. In order to cal-
culate derivatives and ratios at zero magnetization~i.e., at the
maximum of the free energy!, we first have to find its posi-
tion H0(L). FSS predicts@19# the following dependence
H0(L);L2D/n. From our DMRG calculations, we have ob
tained the valueD/n51.8749(2).

For the ‘‘wall11’’ configuration the free energy is no
longer a symmetric function of the bulk fieldH, so we have
been forced to calculatem2 from 5 points andm4 from 7
points. We have taken the incrementDH5531026, m
550 and one sweep. The results are presented in Table I
exponents ofm2 andm4, we have obtained:r252.7504(3)
andr456.5024(3). Theprecision of these results is a littl
bit less than in the ‘‘free’’ case, although still very satisfa
tory ~three significant digits!. However, it should be stresse
that here we must do much more numerical computati
than in the ‘‘free’’ case, so some lack of precision is ine
table. Exact diagonalization of transfer matrix gave the f
lowing values:r 50.45(4); r252.75(1); r456.5(2).

VI. RESULTS: THE ‘‘WALL ¿À ’’ CASE

One of the important physical implications of the ‘‘12 ’’
boundary condition is the presence of aninterfacebetween ‘‘
1 ’’ and ‘‘ 2 ’’ phases in the system. It causes large fluctu
tions, which have an implication in numerical practic
namely,two sweepsare necessary to ensure self-consiste
of results. In our calculations, the value of surface fieldH1
5100 the incrementDH5231025, andm540 were taken.
The results are listed in Table I. The values of exponents
r252.7502(2), r456.502(2).

The procedure of exact diagonalization of transfer ma
gave the following values:r 520.305(2); r252.755(1);
r456.50(2). As amatter of some interest, let us remark th
for the ‘‘wall12 ’’ boundary condition theL dependence is
much weaker than for the ‘‘free’’ and ‘‘wall11 ’’ situations.

VII. SCALING FUNCTIONS FOR RATIOS

The ‘‘wall11/12 ’’-type conditions can be treated a
limiting cases of the systems with equalfinite parallel/
antiparallel (11/12) surface fields. Another limiting cas
is the ‘‘free’’ boundary condition~BC!, where the values o
surface fields are set to zero. One can expect that for in
mediate situations, i.e., finite values of boundary fieldH1,
cumulants would be smooth functions ofH1. Particularly
interesting are scaling properties of these functions. The s
ing theory predicts that at criticality, the system depends
the surface fieldH1 and strip widthL only through dimen-
nd
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sionless combinationz5LH1
2 @20#. We have calculatedr for

both ‘‘11 ’’ and ‘‘ 12 ’’ boundary conditions for L
540,80,120 usingm540, and at full range of scaling vari
able. The results are presented in Figs. 1~a!, 1~b!. It is seen
that scaling properties are confirmed in excellent manne

Limiting values of these functions~i.e., for z50 and z
→`) are fully consistent with our more precise calculation
although convergence of ratio to its limit value is mu
faster for ‘‘wall12 ’’ than for ‘‘wall 11.’’ It is interesting
to examine asymptotic properties ofr (z) for z→`. We have
checked two simplest possibilitiesr (z)'r 1A exp(2Bz) and
r (z)'r 1Az2B, for some constantsA,B. Our data allowed
us to exclude the first possibility, and to verify that the se
ond one is fulfilled with good accuracy. By use of leas
square fitting in the log-log scale, we obtained the valueA
51.57(2), B51.25(1) for the12 case, andA580(10),
B51.28(10) for the11 case. On the base of these resu
we conjecture that the value of the exponentB is common
for both cases and equal to 1.25. At this moment, we are
able to explain it theoretically, and we postpone it to t
future.

As far as we know, scaling functions for cumulants ha
been almost not studied so far. The only exception is pa
@21#; however, the authors consider scaling functions diff
ent from ours.

VIII. SUMMARY

We have calculated cumulant ratios for Ising strips w
three natural boundary conditions, almost not studied so
‘‘free,’’ ‘‘wall 11,’’ and ‘‘wall 12 ’’ situations. We have
applied the density-matrix renormalization-group meth
followed by numerical differentiation and extrapolationL
→`. We claim that our results are very precise~three or four
significant digits!. The precision is comparable with thre
other ‘‘top quality’’ methods used in similar calculation
Monte Carlo@12#, some versions of renormalization grou

FIG. 1. The cumulant ratio as a function ofdimensionlessscal-
ing variablez5LH1

2: ~a! the ‘‘11 ’’ BC ~b! the ‘‘12 ’’ BC. No-
tice that the convergence of ratio to its limit value is much faster
‘‘ 12 ’’ than for ‘‘ 11.’’ For the latter case, the saturation
achieved forz'500 ~outside the range of plot!.
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@13#, and analysis of high-temperature series@10#.
Some of our results~for the ‘‘wall11 ’’ case! can be

interesting in the context of rigorous results for cumulan
namely, those obtained by Newman and Shlosman@22#.
They proved general inequality for Ursell functions in ferr
magnetic Ising systems at zero bulk magnetic fieldH:
(21)n21U2n>0. Our cumulantr corresponds toU4. For the
‘‘free’’ and ‘‘wall 12 ’’ systems, this inequalityis fulfilled,
whereas in the ‘‘wall11 ’’ case is not. This does not con-
tradict the Newman and Shlosman inequality, because
‘‘wall 11 ’’ system is calculated atHÞ0 @remember
H0(L);L2D/n]. It shows, however, that the Newman an
Shlosman inequality cannot be fulfilled if the assumptionH
50 is relaxed. It would be very interesting to generali
their results for the ‘‘wall-type’’ cases.
.
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We have also calculated the quantity which has app
ently escaped attention so far, namely, the scaling functi
for cumulants. Such functions provide information how fin
surface fields influence values of cumulants. This influenc
significant—in one case~‘‘ 11’’ ! even the sign of the cumu
lant changes upon growth of the surface field.

Natural lines of continuation of our investigations ar
testing of universality of cumulants and scaling functio
~for other models in the two-dimensional Ising universal
class, for example, the hard squares model! and calculation
of higher cumulants. This work is currently in progress.
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